A motivic Chebotarev density theorem

نویسنده

  • Ján Mináč
چکیده

We define motivic Artin L-functions and show that they specialize to the usual Artin L-functions under the trace of Frobenius. In the last section we use our L-functions to prove a motivic analogue of the Chebotarev density theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Chebotarev-type density theorem for divisors on algebraic varieties

Let Z → X be a nite branched Galois cover of normal projective geometrically integral varieties of dimension d ≥ 2 over a perfect eld k. For such a cover, we prove a Chebotarev-type density result describing the decomposition behaviour of geometrically integral Cartier divisors. As an application, we classify Galois covers among all nite branched covers of a given normal geometrically integral ...

متن کامل

Knots which Behave Like the Prime Numbers

This paper establishes a version of the Chebotarev density theorem in which number fields are replaced by 3-manifolds.

متن کامل

An Improved Result towards the Lang-trotter Conjecture

In [2], Cojocaru, Fouvry, and Murty prove [some partial results towards the LangTrotter conjecture]. Here we sketch a proof of improved versions of their results. We proceed separately in the GRH and non-GRH cases. Conditionally on GRH, we introduce a new step into their proof and postpone the use of the Chebotarev density theorem until a certain sum S has been analyzed further. Unconditionally...

متن کامل

Saturday, November 7

9:00 Galois Groups of Random p-adic Polynomials Benjamin Weiss The space of fixed degree polynomials with p-adic coefficients has a natural probability distribution. Each polynomial also has an associated group which is the Galois group of its splitting field. We will discuss the induced distribution on groups, and derive results for the limiting distribution as p grows. Time permitting, we wil...

متن کامل

Explicit Results on the Distribution of Zeros of Hecke L-functions

We prove an explicit log-free zero density estimate and an explicit version of the zero-repulsion phenomenon of Deuring and Heilbronn for Hecke L-functions. In forthcoming work of the second author, these estimates will be used to establish explicit bounds on the least norm of a prime ideal in a congruence class group and improve upon existing explicit bounds for the least norm of a prime ideal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006